Российские распределенные вычисления на платформе BOINC
Berkeley Open Infrastructure for Network Computing

Welcome Guest
Create Account
Logon

Project News
Filter
Author name contains: Text contains: Year:

It will be shown no more than 10 results matching your criteria.
Wednesday, June 30, 2021 SerVal#117
Выдача заданий запрещена, в связи с ошибкой Валидатора (отставание в обработке полученных результатов). 

Send work disabled, due to Validator error. I am working about. That will take 3-5 days.

Wednesday, January 27, 2021 evatutin#116
Рабочая база восстановлена SerVal'ом из бэкапа, проект снова работает...

Working database was restored from backup by SerVal, project working again...
Sunday, January 24, 2021 SerVal#115

Сегодня ночью произошла программная поломка базы данных Герасима.

Сначала на 2-3 секунды отключилось электроснабжение. Герасим поднялся. И тут же произошло новое отключение электроэнергии с предварительным морганием света в течение нескольких секунд. Герасим снова поднялся, но SQL-база оказалась повреждена.

Попытки восстановления базы, пока к успеху не привели:

The system could not activate enough of the database to rebuild the log.
Msg 824, Level 24, State 2, Line 29

SQL Server detected a logical consistency-based I/O error: torn page (expected signature: 0xaaaaaaaa; actual signature: 0x5555aaaa). It occurred during a read of page (1:468) in database ID 5 at offset 0x000000003a8000 in file 'D:\DbData\Gerasim.mdf'. Additional messages in the SQL Server error log or operating system error log may provide more detail.

This is a severe error condition that threatens database integrity and must be corrected immediately.
Complete a full database consistency check (DBCC CHECKDB).
This error can be caused by many factors; for more information, see SQL Server Books Online.

Completion time: 2021-01-24T11:03:28.3817407+03:00

Это довольно серьёзная поломка. Сайт Герасима, разумеется, не запускается. Последний бэкап базы данных - 6 января 2021 года. (после соревнования). Сейчас пытаюсь исправить ошибки, но похоже потери данных не избежать.

p.s.

У Герасима две SQL-базы: научная и рабочая. Научная база - в которую копируются посчитанные и проверенные результаты - повреждений не имеет. Получится ли восстановить рабочую базу - пока сказать не могу. И сколько времени это займёт - тоже (может быть день, неделю... а может и месяц).

Friday, December 25, 2020 SerVal#114
Новогоднее соревнование в Герасиме: Gerasim New Year challenge

Gerasim@Home "New Year challenge": Start time: 2020-12-29 13:45 UTC

Sunday, December 20, 2020 SerVal#113




Thursday, December 17, 2020 SerVal#112
*****
Добрый день, ребятки.
PDW объяснил ситуацию на нашем форуме.  Его объяснения приняты. 
Таким образом, история "Как потерять 75 миллионов благополучно завершена".  
75 миллионов  вернулись к PDW и команде OcUK - Overclockers UK
*****
Good afternoon, guys.
PDW explained the situation on our forum. His explanations are accepted. 
Thus, the story "How to lose 75 million is safely completed."
75 million went back to PDW and team OcUK - Overclockers UK
*****

Wednesday, December 16, 2020 SerVal#111

Ребятки, тут есть на что взглянуть:
https://classic.boincstats.com/en/stats/64/user/detail/3050/charts

Замечательные кредиты у товарища PDW. Не правда, ли? По 74 миллиона в день...

p.s.

Думаю, что здесь произошла какая-то ошибка. Разве можем мы сомневаться в честности нашего дорогого товарища PDW?

А по сему, а сказал Герасиму маленько откорректировать его кредиты. Но у Герасима - тоже что-то пошло не так, и он обнулил все кредиты  PDW в проекте и назначил его "User of the day" (Участник дня). Почему-то ещё забанил, и больше не даёт ему заданий.

p.p.s  Команда, в которой участвовал PDW - OcUK - Overclockers UK - тоже понесла невосполнимые потери...

Friday, November 27, 2020 evatutin#110

Tomorrow (or rather, after a short nap, actually already today :) at the National Supercomputer Forum (http://2020.nscf.ru), traditionally held in November and unconventionally - in an online format, starts our section "Grid from workstations and combined grids", where present my report "On the number of cyclic and pandiagonal Latin and diagonal Latin squares of a given order N and their properties". It will briefly talk about the latest investigations in terms of studying the properties of cyclic and pandiagonal LS/DLS, restrictions on the number of transversals in LS/DLS, the calculation of the Euler totient function using Latin squares and the planned experiments in the Gerasim@Home project. Below are the slides of my presentation

http://evatutin.narod.ru/evatutin_slides_nscf2020.pdf

Friday, November 20, 2020 evatutin#109

New versions of computing units have been added to the project. After optimization made by Alexander Albertian they are become 25% faster. Now WU's execution time will be faster by about 25% that will allow to finish running experiments earlier.

Monday, November 16, 2020 evatutin#108

The last line 16 has been added to Gerasim@Home project. The current experiment aimed at determining the quickly computable numerical characteristics of DLS of order 9 (including the collecting of all ODLS CFs) is near to the end. At the moment, the project is counting tails from line 13, in the RakeSearch project lines 12 and 15 are being processed, everything else has already been processed.

Monday, November 16, 2020 evatutin#107

During the exploration of the neighborhoods of generalized symmetries of DLS of order 10 in the third parastrophic slice another promising area (3,15) was found, in which, upon a brief examination, several 2-CF lines-3 and 3-CF cycle-4 was found (both are rare combinatorial structures). Currently prepared 400k WU's for a more detailed study of this neighborhood. They will be added to the project immediately after the elimination of minor problems arising in connection with the transfer of the project to a new server. It is very likely that the arrangement of interesting regions as a whole repeats a similar arrangement in the first parastrophic slice, although the "physical meaning" of these generalized symmetries is completely different.

Thursday, November 12, 2020 SerVal#106

Copying gerasim-server to the temporary server is complete.

At the moment, the server is compiled and runs in debug mode. Send tasks is enabled. 

Thursday, November 12, 2020 SerVal#105

Переношу gerasim-server на временный сервер (AS3).
Выдача заданий для всех приложений запрещена.
Дедлайн для уже отправленных заданий продлён на 3 дня.
В течение 3-х дней проект может быть полностью недоступен.

(надеюсь, управлюсь раньше).

Sunday, November 1, 2020 evatutin#104

Month results of the search for ODLS CFs of order 10 in the Gerasim@Home:

ONCE (A):1 - 388584, where:
   1 CFs - 33160
   2 CFs - 355424

LINE3 (B):1 - 76283, where:
   2 CFs - 18735
   3 CFs - 57548 (+794)

LINE3 (B):2 - 47509, 8:1, where:
   2 CFs - 18735
   3 CFs - 28774 (+437)

LINE4 (C):1 - 128, where:
   2 CFs - 4
   4 CFs - 124

LINE4 (C):2 - 128, where:
   2 CFs - 4
   4 CFs - 124 (+2)

LINE5 (D):1 - 17, where:
   3 CFs - 17

LINE5 (D):2 - 34, where:
   3 CFs - 34

LOOP4 (E):2 - 2252, where:
   1 CFs - 2
   2 CFs - 138
   3 CFs - 1464
   4 CFs - 648

1TO3 (F):1 - 378, where:
   4 CFs - 378

1TO3 (F):3 - 126, where:
   4 CFs - 126

1TO4 (G):1 - 1302, where:
   3 CFs - 882
   5 CFs - 420

1TO4 (G):4 - 546, where:
   3 CFs - 441
   5 CFs - 105

1TO5 (k):1 - 10, where:
   6 CFs - 10

1TO5 (k):5 - 2, where:
   6 CFs - 2

1TO6 (H):1 - 42, where:
   4 CFs - 24
   7 CFs - 18

1TO6 (H):6 - 11, where:
   4 CFs - 8
   7 CFs - 3

1TO7 (h):1 - 7, where:
   8 CFs - 7

1TO7 (h):7 - 1, where:
   8 CFs - 1

1TO8 (I):1 - 48, where:
   5 CFs - 32
   9 CFs - 16

1TO8 (I):8 - 10, where:
   5 CFs - 8
   9 CFs - 2

RHOMBUS3 (J):2 - 9, where:
   5 CFs - 9

RHOMBUS3 (J):3 - 6, where:
   5 CFs - 6

RHOMBUS4 (K):2 - 73, where:
   3 CFs - 2
   4 CFs - 23
   5 CFs - 32
   6 CFs - 16

RHOMBUS4 (K):4 - 34, where:
   3 CFs - 1
   4 CFs - 17
   5 CFs - 8
   6 CFs - 8

FISH (N):1 - 7, where:
   4 CFs - 1
   6 CFs - 6

FISH (N):2 - 11, where:
   4 CFs - 2
   6 CFs - 9

FISH (N):4 - 4, where:
   4 CFs - 1
   6 CFs - 3

TREE1 (V):1 - 2, where:
   4 CFs - 2

TREE1 (V):2 - 1, where:
   4 CFs - 1

TREE1 (V):3 - 1, where:
   4 CFs - 1

CROSS (X):1 - 16, where:
   6 CFs - 16

CROSS (X):2 - 4, where:
   6 CFs - 4

CROSS (X):4 - 4, where:
   6 CFs - 4

DAEDALUS10 (i):1 - 6, where:
  12 CFs - 6

DAEDALUS10 (i):2 - 4, where:
  12 CFs - 4

DAEDALUS10 (i):4 - 1, where:
  12 CFs - 1

DAEDALUS10 (i):10 - 1, where:
  12 CFs - 1

FLYER (j):1 - 2, where:
   8 CFs - 2

FLYER (j):2 - 3, where:
   8 CFs - 3

FLYER (j):4 - 3, where:
   8 CFs - 3

VENUS (l):1 - 1, where:
   5 CFs - 1

VENUS (l):2 - 3, where:
   5 CFs - 3

VENUS (l):4 - 1, where:
   5 CFs - 1

DAEDALUS8 (m):1 - 2, where:
   6 CFs - 2

DAEDALUS8 (m):2 - 2, where:
   6 CFs - 2

DAEDALUS8 (m):4 - 1, where:
   6 CFs - 1

DAEDALUS8 (m):8 - 1, where:
   6 CFs - 1

RHOMBUS5 (n):2 - 4, where:
   5 CFs - 4

RHOMBUS5 (n):5 - 1, where:
   5 CFs - 1

1TO10 (o):1 - 5, where:
   6 CFs - 5

1TO10 (o):10 - 1, where:
   6 CFs - 1

ROBOT (p):1 - 4, where:
   5 CFs - 4

ROBOT (p):2 - 4, where:
   5 CFs - 4

ROBOT (p):4 - 2, where:
   5 CFs - 2

STINGRAY (q):1 - 1, where:
   5 CFs - 1

STINGRAY (q):2 - 3, where:
   5 CFs - 3

STINGRAY (q):3 - 1, where:
   5 CFs - 1

An experiment to study the properties of neighborhoods of generalized symmetries:
* parastrofic slice 1 [Px Py Pv]: processed 638 (+21) neighborhoods from 903 (70,6%, +2,3%);
* parastrofic slice 3 [Py Px Pv]: processed 122 (+24) neighborhoods from 1764 (6,9%, +1,4%).

An experiment to study the properties of DLS of order 9:
* Gerasim@Home project — processed lines: 1, 2, 3, 5, 6, 9, 17, 20; currently in processing: line 7;
* RakeSearch project — processed lines:  4, 10, 14, 18, 19; waiting tails from lines: 8, 11; currently in processing: 12.
Total: processed 45,29% of search space, found 55515 ODLS CFs and 406 new combinatorial structures.

Thursday, October 29, 2020 evatutin#103

7 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

1. 24N80M12C - 012345678120458736365271084453782160534867201608514327271036845847603512786120453
2. 28N85M14C - 012345678120486753481750362764531280638274015375068124856123407547602831203817546
3. 31N79M21C - 012345678123458067376812540287501436561034782634287105450763821845670213708126354
4. 35N85M35C - 012345678120486735856123407738561240384672051473058126645710382567204813201837564
5. 36N93M18C - 012345678120478536278534160601782345367251084453016827536827401845603712784160253
6. 56N126M28C - 012345678120478536534867201601584327453712860278036145845603712367251084786120453
7. 77N193M55C - 012345678123478056568231704480752163754860231635014827271586340847603512306127485

Traversed 42.61% of the search space, 53476 ODLS CFs of order 9 found at this moment.

Wednesday, October 28, 2020 evatutin#102

6 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

1. 26N74M26C - 012345678120483567465721380657832401346570812783164025274608153801256734538017246
2. 28N81M14C - 012345678123486750756120483534861207645078312807234561480753126261507834378612045
3. 28N81M28C - 012345678120486753401857362834561207368274015675038124756123480547602831283710546
4. 32N82M10C - 012345678123876054756028431678450123205613847431287560847502316560134782384761205
5. 36N93M18C - 012345678123458067345876210587601432601234785234587106750163824876012543468720351
6. 48N117M18C - 012345678120478536867153024601582347273014865458736210736820451345601782584267103

Traversed 41.64% of the search space, 52207 ODLS CFs of order 9 found at this moment.

Tuesday, October 27, 2020 evatutin#101

4 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

1. 12N25M6C - 012345678120567834476128503563812740358674021785403162231780456804256317647031285
2. 14N20M12C - 012345678123076845568134702874501326705863214481257063230618457657482130346720581
3. 24N72M24C - 012345678120483567574168230603874152348657021257016384481532706836720415765201843
4. 28N86M28C - 012345678123784065804236157637852401546073812785461320460127583251608734378510246

Traversed 40.24% of the search space, 51219 ODLS CFs of order 9 found at this moment.

Monday, October 26, 2020 evatutin#100

9 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

1. 9N12M9C - 012345678123758046845107362670831524734560281368214750257486103401672835586023417
2. 10N14M5C - 012345678120568743283476015457182360746051832835607124561823407674230581308714256
3. 32N86M32C - 012345678123670845306418257470821536748253061254067183567184320835706412681532704
4. 32N89M32C - 012345678126087435735624180867452301204163857351708264480531726643870512578216043
5. 33N89M33C - 012345678120483756763158420537861204845076312681204537456720183204537861378612045
6. 34N90M34C - 012345678120487563745063281853670124407812356681534702234706815576128430368251047
7. 36N87M36C - 012345678123056847856174032387402156674518203248637510465780321530261784701823465
8. 38N99M19C - 012345678123057864846270315587432106375618240601783452730864521254106783468521037
9. 48N324M18C - 012345678126437850475801263580124736247063185634758012751682304803276541368510427

Traversed 39.00% of the search space, 49723 ODLS CFs of order 9 found at this moment.

Monday, October 26, 2020 evatutin#99

215 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

1. 104N424M36C - 012345678123670854387514260406851327245067183658423701570182436834706512761238045
2. 104N448M32C - 012345678123657840257480361430871526574168203861234057345706182608512734786023415
3. 10N12M8C - 012345678123057846251630784864572103547863021476108352735281460608714235380426517
4. 10N14M10C - 012345678123457806354186720476803152507264381830571264761028543648712035285630417
5. 10N14M10C - 012345678120678435783560214236481057301852746864017523457136802548723160675204381
6. 10N16M10C - 012345678120487365431756280863521704546873012785064123604132857257608431378210546
7. 112N516M76C - 012345678120678534637451082563827401784160253376514820451082367845203716208736145
8. 11N17M11C - 012345678124086735683751024836124507540672813407538162751263480368407251275810346
9. 12N18M12C - 012345678231687504586071432658403721374852160740218356407136285865724013123560847
10. 12N18M12C - 012345678123568704684157230246703851358612047570486123805274316467031582731820465
11. 12N20M12C - 012345678120476835563784120635827401784150263357261084846503712201638547478012356
12. 12N20M6C - 012345678123854706658403127570612843267130584481567230306728451845076312734281065
13. 12N24M12C - 012345678123578460248653017580427136657014382701236845365801724834760251476182503
14. 12N32M6C - 012345678230618745681457023827506314356720481768134502143072856475283160504861237
15. 130N710M53C - 012345678123457860867124503451603287386712045745068132504871326678230451230586714
16. 14N16M10C - 012345678123478056847156230380527164274861503658034712701682345536210487465703821
17. 14N24M14C - 012345678123087546435618027248751360704863215681204753567132804850476132376520481
18. 14N24M14C - 012345678120487356785236014638102745574063281803714562461570823247658130356821407
19. 14N32M14C - 012345678231457860374860251405683127628714503867502314150238746543176082786021435
20. 166N1106M83C - 012345678123567804576804132840132567684071325357628041705213486231486750468750213
21. 16N32M14C - 012345678123487560708561324481630752340758216637124805564072183875206431256813047
22. 16N32M8C - 012345678127568340543871062460182753206453817834607521781026435675230184358714206
23. 16N40M14C - 012345678231078546168507234847251063785460312356714820423186705604823157570632481
24. 18N17M12C - 012345678123057846785432160247860531560173482431286705806514327654728013378601254
25. 18N24M18C - 012345678123706845258670134580462713765834021376521480437218506804157362641083257
26. 18N28M9C - 012345678120486753384571206765123480843762015657018342201837564576204831438650127
27. 18N44M18C - 012345678231487065154860327875624130683572401367108254740213586428056713506731842
28. 18N59M9C - 012345678123478506486207135570182364647051283801763452734526810265830741358614027
29. 18N66M18C - 012345678120467835235708416784630152357814260601283547846051723473526081568172304
30. 18N68M18C - 012345678120487536734652180471836052658270413583061724865124307347508261206713845
31. 18N68M9C - 012345678120476853854610732673502481568731240347128506736084125201857364485263017
32. 19N36M19C - 012345678120486753485671230573124806247063185634758012861507324706832541358210467
33. 20N25M10C - 012345678120476835685107423734851260473562081856213704347680152201738546568024317
34. 20N36M20C - 012345678123486750465738102507864231648072315354621087780153426831207564276510843
35. 20N49M10C - 012345678120476853745681230683124705457063182234758016571802364806237541368510427
36. 20N69M20C - 012345678120487365506138724854760213248651037785203146371826450637014582463572801
37. 20N70M20C - 012345678120463857453728061281634705578016243804257136346872510637501482765180324
38. 20N72M10C - 012345678120473865734856021453687210605138742876201354281764503347520186568012437
39. 20N72M20C - 012345678120478356805637241261750483587264130674183502453016827346802715738521064
40. 20N73M10C - 012345678123786450256478103401857236764531082837204561580163724345620817678012345
41. 20N74M20C - 012345678120467835605738412234680157857014263781203546346851720473526081568172304
42. 20N76M10C - 012345678123786450364521087458132706245670813706458132581067324837204561670813245
43. 20N76M8C - 012345678123864705805476231740621853681732540376518024257103486564087312438250167
44. 22N40M22C - 012345678123487560756130482604851237548072316367524801480763125831206754275618043
45. 22N41M22C - 012345678120486753485671230673154802247063185534728016861507324706832541358210467
46. 22N42M22C - 012345678123586704506824137784153062648072315370218546835760421267431850451607283
47. 22N70M22C - 012345678120467835234708156785630412347851260601283547856014723573126084468572301
48. 22N70M22C - 012345678120483567586127430653872104347658021278014356401536782834760215765201843
49. 22N72M22C - 012345678120467835356814720234780516847051263685203147701638452563172084478526301
50. 22N74M22C - 012345678123758046745801362860137524374560281637284150451672803208416735586023417
51. 22N74M22C - 012345678120456837734812065687524103568073421305168742476281350853607214241730586
52. 22N74M22C - 012345678120463857681207435468750321504631782753128064846072513375816240237584106
53. 22N76M16C - 012345678123468507387510264258607143601732485875124036734256810460871352546083721
54. 22N76M22C - 012345678120768453584176320247850136753612084601283547836524701375401862468037215
55. 22N80M11C - 012345678120476853854610732673502481541837206367128540736084125208751364485263017
56. 24N36M12C - 012345678123658740786034521231706854658417032540283167867520413405172386374861205
57. 24N41M12C - 012345678120478536367152084536827401874061253683514720451280367745603812208736145
58. 24N48M24C - 012345678123758064784160253468513720340271586875406312651032847207684135536827401
59. 24N64M12C - 012345678123487560386751024650124387548073216407568132761832405834206751275610843
60. 24N64M24C - 012345678124087536785631420861452703546870312408163257370216845253708164637524081
61. 24N64M8C - 012345678123756840245683701867412035754061283430578126571804362608237514386120457
62. 24N68M12C - 012345678123487560701853426457630182648072315580164237365721804834206751276518043
63. 24N72M24C - 012345678120687435768210543356402781543768012874153206687534120201876354435021867
64. 24N73M12C - 012345678123567804805724316548612730264873051386401527731280465457036182670158243
65. 24N74M24C - 012345678120467835235708416784630152857014263601283547346851720473526081568172304
66. 24N74M24C - 012345678120478536871056243263710485587264310654183702405637821346802157738521064
67. 24N75M24C - 012345678120478563576204381647832105864517032251763840735081426308126754483650217
68. 24N76M12C - 012345678120473865734856021853607214287534106476281350601728543345160782568012437
69. 24N76M23C - 012345678120486735836521407473850162568274013745613280601738524357102846284067351
70. 24N76M24C - 012345678120467853734680125683502417278136540341758206856014732507821364465273081
71. 24N76M24C - 012345678120678435754086123561827340387154206645203817836410752208731564473562081
72. 24N76M24C - 012345678120463857534876021873501264201638745465287310386754102647120583758012436
73. 24N77M24C - 012345678120478356475283160386127405734860521658014237863502714547631082201756843
74. 24N78M24C - 012345678120567834468250713601724385835416207584073162746138520357682041273801456
75. 24N78M24C - 012345678120463857531607482458720361687234105763158024846072513375816240204581736
76. 24N78M24C - 012345678120453867345876210468720351281634705753168024634507182876012543507281436
77. 24N78M24C - 012345678120473856537628140481532067203867514856014732764180325675201483348756201
78. 24N80M24C - 012345678123786540468057321245630817530472186387261054701528463856104732674813205
79. 24N81M12C - 012345678123480756834756201576123480648072315357618042261804537705231864480567123
80. 24N82M12C - 012345678120486753783601245871520364205864137648137520367058412534712086456273801
81. 24N84M24C - 012345678123087546235416087468751320704863215681204753547130862850672134376528401
82. 25N76M25C - 012345678123867450504786231465130782246578013780453126351624807837201564678012345
83. 26N51M13C - 012345678120478536685107423734851260473562081856213704347680152201736845568024317
84. 26N60M26C - 012345678230657814467812350683574102375128046841036725506281437154760283728403561
85. 26N76M13C - 012345678120476853854610732673502481268731540547128306736084125301857264485263017
86. 26N76M26C - 012345678120476835368204751685730124401857362754163280836521407547682013273018546
87. 26N76M26C - 012345678123480756486753102831567240507234861375618024750126483648072315264801537
88. 26N77M26C - 012345678120476835756084123541827360367158204485263017834610752208731546673502481
89. 26N78M26C - 012345678120468537206731485473582160634870251758014326341657802865203714587126043
90. 26N78M26C - 012345678120473865764852031358607214607538142476281350831724506245160783583016427
91. 26N78M26C - 012345678120453867375816240458760321601534782763128054237681405846072513584207136
92. 26N79M26C - 012345678123674850408132765654780312560813427375406281786021534831257046247568103
93. 26N81M26C - 012345678120478365208136754654710283346851027765203841581627430837064512473582106
94. 26N82M26C - 012345678120476835756084123561827304347158260485263017834610752208731546673502481
95. 27N77M19C - 012345678123468507387510264238657140601732485875124036754206813460871352546083721
96. 27N77M27C - 012345678123758046374506281706821534845167302468013725257480163631274850580632417
97. 28N56M28C - 012345678120687435678210543467531820354876201835024167786102354543768012201453786
98. 28N60M27C - 012345678123487560356120487407851236648072315761534802580763124834206751275618043
99. 28N76M14C - 012345678120476835235708416781630542857014263604283157346851720473562081568127304
100. 28N76M28C - 012345678120453867354876021873601254601538742436287510285764103547120386768012435
101. 28N77M28C - 012345678120467835856104723234780516347851260685213047701638452563072184478526301
102. 28N77M28C - 012345678123680457865024713648703521431267085750138246374852160507416832286571304
103. 28N78M28C - 012345678120456837538072461385760142764813025601524783856207314473681250247138506
104. 28N80M28C - 012345678120468357207156483463582710586731042738014526341627805875203164654870231
105. 28N81M28C - 012345678120467835205738416734680152357814260681203547846051723473526081568172304
106. 28N81M28C - 012345678120458736736820451403782165278516340651034827847603512365271084584167203
107. 28N82M28C - 012345678120476835368204751485730162601857324754163280836521407547682013273018546
108. 28N82M28C - 012345678123784560785461023651802734207638451460127385834256107376510842548073216
109. 28N84M14C - 012345678120483765768052431853607214275134806486271350341760582607528143534816027
110. 28N84M14C - 012345678120473865768052431853607214685134702476281350241760583307528146534816027
111. 28N84M25C - 012345678123480756708156432867521304640873215381064527456732180534207861275618043
112. 28N84M28C - 012345678123058764584763210760831542631274805258416037845107326407682153376520481
113. 28N84M28C - 012345678120463857531607482458720361687034125763158204346872510875216043204581736
114. 28N88M14C - 012345678120476835367284051836521407754163280603758142485017326548602713271830564
115. 29N91M29C - 012345678123587406876420135380712564561238740258674013405163827647801352734056281
116. 30N56M30C - 012345678123407865784632150805164327546873012637258401460721583251086734378510246
117. 30N64M28C - 012345678123407856605723184761854032846572310487631205350168427534280761278016543
118. 30N68M26C - 012345678123078546784136025476582130257864301368701254801453762635210487540627813
119. 30N80M30C - 012345678120456837568073421635720184743812065381564702456287310874601253207138546
120. 30N82M15C - 012345678120476853756284130483562017267831504541708362834610725308157246675023481
121. 30N82M30C - 012345678120483756837620145783512064401867532265034817654178320576201483348756201
122. 30N82M30C - 012345678123476805801237564736852041547063182685124730254780316478601253360518427
123. 30N82M30C - 012345678120476853736084125483562017568137204241758360854610732307821546675203481
124. 30N82M30C - 012345678120478356807613245634580712783264501265731480471056823546802137358127064
125. 30N83M30C - 012345678120476835756084123241837560367158204485263017834610752508721346673502481
126. 30N83M30C - 012345678120476835851237064736802541347568102605124783284750316473681250568013427
127. 30N84M30C - 012345678120486735804163257736521480348672501273058164685710342567204813451837026
128. 30N87M30C - 012345678120483567564872031873601254657134802486257310305728146241560783738016425
129. 30N88M30C - 012345678120487536573604281834571062341762805765018423607823154258136740486250317
130. 31N90M31C - 012345678120463857631207485458720361587634102763158024846072513375816240204581736
131. 31N90M31C - 012345678123578064467152380674820135580416723801263547235687401346701852758034216
132. 32N103M16C - 012345678120468537863017245375620481586274310734581062401756823247803156658132704
133. 32N112M28C - 012345678123607845857014263285463107346851720604178532470526381568732014731280456
134. 32N64M16C - 012345678123768405465187230708431562246570813851603724384026157637254081570812346
135. 32N81M16C - 012345678124567830635081247840726351463810725786453012257108463301672584578234106
136. 32N84M32C - 012345678120473856538204761681750342764531280853126407476018523347682015205867134
137. 32N85M16C - 012345678120487536834652107403816752658270413576031824765124380347508261281763045
138. 32N86M32C - 012345678120487536847026153286510347534768012701253864365871420673104285458632701
139. 33N117M33C - 012345678123457860607821543451683207360712485745068132584170326876234051238506714
140. 33N85M33C - 012345678120473865738056421453687210247530186876201354681724503305168742564812037
141. 33N87M33C - 012345678124076853567284031730561284681437520403758162856123407348602715275810346
142. 33N88M33C - 012345678120473865764852031853607214287534106476281350301768542645120783538016427
143. 33N91M33C - 012345678120473865734856021853607214685134702476281350301728546247560183568012437
144. 34N100M34C - 012345678123057846458163027687501432506732184731684205365428710874210563240876351
145. 34N82M34C - 012345678120486357261873405834752016358260741675124830483017562507631284746508123
146. 34N89M34C - 012345678120478536584167203603714825847653012258036147471582360365201784736820451
147. 34N89M34C - 012345678120567843745608132451872306684230517368714250236051784807123465573486021
148. 34N90M34C - 012345678123067845307814256254670183648253701460128537576481320835706412781532064
149. 34N98M17C - 012345678120478536867253014678532140253014867401786325736820451345601782584167203
150. 35N101M35C - 012345678120476853736084125483562017247831560361758204854610732508127346675203481
151. 35N90M35C - 012345678124567803637280541546802317268134750385671024751028436870453162403716285
152. 36N144M36C - 012345678120568743456871230845107362674230581237684105761053824308712456583426017
153. 36N264M36C - 012345678124068735758621403236187054867453210473206581541870362305712846680534127
154. 36N89M36C - 012345678120678435754086123261837540387154206645203817836410752508721364473562081
155. 36N91M36C - 012345678120476835354812067873601254768053421436287510287534106541760382605128743
156. 36N92M12C - 012345678120476835374680152241837506763158240685203417856014723508721364437562081
157. 36N92M36C - 012345678120473865764852031453687210607538142876201354381724506245160783538016427
158. 36N92M36C - 012345678120453867376821540468710352581234706753168024637502481845076213204687135
159. 36N92M36C - 012345678120476853376084125483562017567831204241758360854610732708123546635207481
160. 36N93M36C - 012345678120483756801564237486750123267831504753126480534207861375618042648072315
161. 37N87M37C - 012345678120458736278536140401782365734860251653014827367201584845673012586127403
162. 37N89M37C - 012345678120483765738056421853607214675134802486271350341720586207568143564812037
163. 37N91M37C - 012345678120436857504781362738650124683572410875213046241867503367104285456028731
164. 37N95M37C - 012345678120473865764852031453687210605138742876201354381724506247560183538016427
165. 38N108M36C - 012345678230457816376812405487536120645128037861074352503281764154760283728603541
166. 38N72M34C - 012345678123708456378412065780561234465870312541236780854623107236087541607154823
167. 38N88M38C - 012345678120486735736521480671850342548672013854163207485037126367204851203718564
168. 38N90M38C - 012345678120467835234708156785630412847051263601283547356814720573126084468572301
169. 38N93M38C - 012345678123458067346872510637581402261034785584207136750163824875610243408726351
170. 38N93M38C - 012345678120486357261873405834752016348560721675124830483017562507631284756208143
171. 39N91M39C - 012345678123568740458702316804631257760453821381027465546270183675814032237186504
172. 39N96M39C - 012345678123784560485167023657802431864230157706421385231658704370516842548073216
173. 40N102M20C - 012345678123786405756430182678512340245178063487603521364021857830254716501867234
174. 40N110M16C - 012345678123704856647058132265810743758436021304261587836527410570182364481673205
175. 40N272M20C - 012345678123076854275683140538410726704861235481257063867504312640132587356728401
176. 41N103M41C - 012345678123506847287650134605413782874061253431278506540782361356827410768134025
177. 41N99M41C - 012345678123458067876012543284561730507634182631287405460723851345870216758106324
178. 42N104M42C - 012345678123680745864072513678503421531267084740138256357824160405716832286451307
179. 42N105M42C - 012345678123704865706528341461872530235610784687453102350287416874061253548136027
180. 42N107M21C - 012345678123750864768423051435601287581234706604587132857016423346872510270168345
181. 42N97M42C - 012345678120476835534812067453687201768153420876201354201538746345760182687024513
182. 43N113M43C - 012345678120476853376084125483562017547831260261758304854610732708123546635207481
183. 44N103M44C - 012345678120486753605817432743651280568273041374068125856124307437502816281730564
184. 44N120M36C - 012345678123574806468152730685413027734068251850237164371680542247806315506721483
185. 44N148M22C - 012345678123487560356721084608154327540873216467538102781062435834206751275610843
186. 45N107M45C - 012345678120453867375816240458760321681534702763128054207681435846072513534207186
187. 46N102M23C - 012345678120476835564813027853607214738052461476281350201538746347160582685724103
188. 47N114M47C - 012345678120567834657402183765834012384256701438021567846170325573618240201783456
189. 47N115M47C - 012345678120456837564873021305764182738012465641528703456287310873601254287130546
190. 48N106M48C - 012345678127406853405718362673850124568274031754163280836521407340682715281037546
191. 48N96M24C - 012345678123478506587013264251607483638752140870164325704536812465821037346280751
192. 50N110M50C - 012345678120473856278134065601582743765218304483706521536827410847650132354061287
193. 50N150M25C - 012345678123468750835670421274803165356714802601237584480526317567182043748051236
194. 52N296M44C - 012345678120687435678210543861452307543876012257103864736524180304768251485031726
195. 54N124M54C - 012345678120487563783164025865721340408652137651238704237806451546073812374510286
196. 54N142M54C - 012345678123768504538210746457682130701534862864107325285076413346821057670453281
197. 56N188M42C - 012345678123607845857014263285463107346851720604178532470286351568732014731520486
198. 56N192M56C - 012345678123567804847051263281673540356214087604738152735820416568402731470186325
199. 56N392M48C - 012345678120678453678012345783450126504867231456123780837201564345786012261534807
200. 60N464M50C - 012345678127438506738651420584123067350264781406587132861702354675810243243076815
201. 6N8M6C - 012345678120478536758063421586720143634812057301654782465287310873501264247136805
202. 72N372M36C - 012345678123086745358670124246137850864751203781204536470562381537418062605823417
203. 72N380M36C - 012345678120487536583761024401836752748650213867124305634572180375208461256013847
204. 7N6M7C - 012345678123506847586274031867152304248730516435687120671028453350461782704813265
205. 7N7M7C - 012345678120476835564813027483627510738052461876201354301568742245730186657184203
206. 80N380M40C - 012345678123876540874620315461582037630417852258703164386054721705261483547138206
207. 88N512M64C - 012345678234708561806253147587162430653870214761534082470621853145087326328416705
208. 8N10M8C - 012345678120487536583761024765124380648570213407638152831256407354802761276013845
209. 8N8M6C - 012345678120468357581704236307681542245176803768053124856237410634520781473812065
210. 8N9M8C - 012345678120476835534812067483627510768053421876201354301568742245730186657184203
211. 92N382M64C - 012345678128473560756804312873562041304618257631027485467251803245180736580736124
212. 95N255M95C - 012345678120687345265874013803756124746130852487261530351028467674503281538412706
213. 9N11M9C - 012345678120483567874652103768124350341570286485036712503761824657208431236817045
214. 9N14M9C - 012345678120486753508127364754610832836074125687253410241738506365801247473562081
215. 9N17M9C - 012345678120478536765081423351862704834217065248736150476150382607523841583604217

A significant increase in the number of structures is associated with the beginning of processing of the 7th line, in which ODLS CFs number is significantly higher than in the other lines processed earlier. The increase in the number of finds required automation from the classification, which was done; now the process of post-processing of new structures takes much less my personal time.

Traversed 37.86% of the search space, 48248 ODLS CFs of order 9 found at this moment.

Tuesday, October 20, 2020 evatutin#98

By analogy with inequalities for loops (see https://vk.com/wall162891802_1403), we can formulate a number of inequalities for Latin subrectangles in DLS. Every nontrivial subrectangle is a subrectangle in the DLS by definition. Similarly, by definition, each intercalate is a nontrivial 2x2 subrectangle (except for the dimension N = 2, where it will be trivial, but there is no DLS of this dimension). These simple statements allow us to establish a number of relationships between the values ​​of numerical series associated with subrectangles and intercalates:

1. For subrectangles: 0 <= A307839(N) <= A307840(N).
2. For nontrivial subrectangles: 0 <= A307841(N) <= A307842(N).
3. For minimum values: 0 <= A307163(N) <= A307841(N) <= A307839(N).
4. For maximum values: A307164(N) <= A307842(N) <= A307840(N).

Monday, October 19, 2020 evatutin#97

2 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 19N52M19C — 012345678123480567681753420748561032504672813837206145270814356456037281365128704
* 25N58M25C — 012345678120487365308561742547632081674158230786023154851276403235704816463810527

Traversed 23.96% of the search space, 23947 ODLS CFs of order 9 found at this moment.

The post-processing has been changed in such a way that now the found ODLS CFs are laid out by lines and the xSODLS number is calculated (see screenshot). At the moment all 88 DSODLS CFs  have been found (it is interesting if the results obtained earlier are correct or not yet? :), 108 SODLS CFs of 470 known ones and 3713 ESODLS CFs found.

Monday, October 19, 2020 evatutin#96

Each partial loop is a loop in a diagonal Latin square by definition. Similarly, by definition, each intercalate is a partial loop of length 4. These simple statements allow us to establish a number of relationships between the values of the numerical series associated with loops and intercalates and calculated earlier:

1. For loops: 0 <= A307166(n) <= A307167(n).
2. For partial loops: 0 <= A307170(n) <= A307171(n).
3. For minimum values: 0 <= A307163(n) <= A307170(n) <= A307166(n).
4. For maximum values: A307164(n) <= A307171(n) <= A307167(n).

Add to OEIS, the first swallow (https://oeis.org/draft/A307163) went, or rather, flew :)

Monday, October 19, 2020 evatutin#95
Sunday, October 18, 2020 evatutin#94

 5 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 14N17M14C — 012345678123467850786514302457830126508672413870153264634201587361028745245786031
* 28N40M28C2 — 012345678123078546758463201286750134630512487801634752465287310574821063347106825
* 41N105M41C — 012345678124076835536814207270481356763258041358607412847523160601732584485160723
* 35N99M35C2 — 012345678123076845768453201281760534530612487807534162456287310674821053345108726
* 52N135M52C — 012345678126408753754163280638571042275834106801756324540627831367280415483012567


Traversed 23.36% of the search space, 23744 ODLS CFs of order 9 found at this moment.

Saturday, October 17, 2020 evatutin#93

 1 new combinatorial structure from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 6N9M4C — 012345678123078564468701325256430187687513042571286430835124706340867251704652813

Traversed 22.51% of the search space, 23346 ODLS CFs of order 9 found at this moment.

Tuesday, October 13, 2020 evatutin#92

 3 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 34N94M34C2 — 012345678120478536805627413463750182587164320648213705271036854356801247734582061
* 39N100M39C — 012345678123706854548670213604537182370812546281064735756428301837251460465183027
* 34N100M34C — 012345678123706854548670213601537482370812546287064135756428301834251760465183027

 Traversed 18.66% of the search space, 22431 ODLS CFs of order 9 found at this moment.

Monday, October 12, 2020 evatutin#91

 16 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 7N8M7C3 — 012345678123570846486752013541803762230617485875264301367081524758426130604138257
* 8N14M4C — 012345678123684750375168042504816237487532106836207514651720483248071365760453821
* 9N12M5C — 012345678127608534356871402784160253840253716608734125471582360563427081235016847
* 11N14M11C — 012345678120483756357618042834501267765230481483756120576124803648072315201867534
* 16N24M2C2 — 012345678123670854634851207248713560475162083560428731851207346307586412786034125
* 16N28M8C — 012345678120478536845603721253784160734860215367251084471036852608512347586127403
* 16N34M8C2 — 012345678123786450756420183847153062430678521385204716264531807501867234678012345
* 24N80M10C — 012345678120487563763058412845673201458710326376204185637521840201836754584162037
* 34N94M15C — 012345678143706825685437012721853406406218357850672134234560781378124560567081243
* 38N94M13C — 012345678123780546785126034850467312674018253467203185346572801231854760508631427
* 50N154M50C — 012345678120456837738012465647520183564873021385164702476281350853607214201738546
* 112N1130M28C — 012345678120678534458036127271584360534867201347251086865403712603712845786120453
* 140N657M46C — 012345678120567834245783061683152740806274315358406127731820456467031582574618203
* 160N1216M40C — 012345678120468753468753120735102486843076512581624037654287301207531864376810245
* 160N1282M40C — 012345678120458736536827401784160253845673012603514827451782360367201584278036145
* 226N1422M79C — 012345678127408536653782140784160253865273014401536827536827401340651782278014365

Traversed 17.91% of the search space, 22014 ODLS CFs of order 9 found at this moment.

Thursday, October 8, 2020 evatutin#90

Some of my colleagues do not understand why OEIS is needed at all and why calculate numerical series that no one needs (in their opinion). I will show one of the very interesting applications of the encyclopedia in my opinion - with its help you can establish correspondences between various combinatorial objects, which at first glance may seem different, but in fact are the same, only viewed from different angles.

So, not so long ago we counted X-based diagonal fillings of the DLS diagonals, which resulted in 3 sequences in the OEIS: A309283, A337302 and A337303. So it turns out that if in A337302 (the number of X-based fillings with a fixed diagonal) we remove the starting value a(1)=1 and duplicates of the other values, then we get the sequence A000316 associated with card matchings). Or, in other words,

A337302(n) = A000316(floor(n/2)) for all n>1.

This fact was noticed by Andrew Howroyd, for which special thanks to him!!!

And for the sequence A000316, which has been known for almost half a century, there are also exact formulas (for example, through the permanent of a 2n x 2n matrix with zeros on its diagonals, and all other values are filled with ones or in the form of a recurrent dependence (2*n-3)*a(n) = 2*(n-1)*(2*n-1)^2*a(n-1) + 4*(n-1)*(2*n-3)*a(n-2) - 16*(n-2)*(n-1)*(2*n-1)*a(n-3)), and a generating function, and much more...

The bottom line is that thanks to our calculations, OEIS and Andrew Howroyd, another connection has been established between the DLS and the already known combinatorial objects and problems, which is good news! And for A337302 there are isomorphism classes expressed in terms of the A309283 series. Maybe they will find a connection with something else...

PS. Now I'm worried about the fate of the sequence A337302... Will it be removed? Wouldn't want to... Will add a short description of this fact to A000316? In general, let's see how the OEIS editors will look at the revealed pattern ...

PPS. The same trick with the sequence A309283 does not work: after deleting the starting unit and duplicates, the sequences "0, 2, 3, 20, 67, 596" or "2, 3, 20, 67, 596" are not represented in the OEIS. Perhaps (again according to Andrew Howroyd) they need to be added...

Thursday, October 8, 2020 evatutin#89

10 new combinatorial structures from DLS of order 9 was found in the projects Gerasim@Home and RakeSearch:

* 9N12M2C — 012345678123708465365024187687453021248670513436281750754136802801567234570812346
* 12N14M6C — 012345678126087543543126087658702314287453106304618725871560432435871260760234851
* 12N16M6C — 012345678123480756748062315276531804684173520807256431530824167365718042451607283
* 20N20M3C — 012345678124038765376184052541862307207516834830457126463271580658703241785620413
* 24N112M7C — 012345678123867450764528103847603521385176042630251784256430817508714236471082365
* 25N75M25C — 012345678120457863436278510765824301687130425548061237301582746874613052253706184
* 30N48M2C — 012345678123867450386524107865403721240678513437251086754130862501786234678012345
* 72N182M15C — 012345678126758304731084265453801726567432081840576132384267510275610843608123457
* 124N434M34C — 012345678123687450358420167470153826245768013637204581864531702501876234786012345
* 128N476M32C — 012345678123486750256730481784153026340678512835204167461527803507861234678012345

Traversed 12.21% of the search space, 18467 CF ODLS of order 9 found at this moment.

Wednesday, October 7, 2020 evatutin#88

 One more new combinatorial structure from DLS of order 9 was found in the project:

* 7N9M7C - 012345678120467853583710426674581230835176042467238501746023185201854367358602714

Traversed 10.67% of the search space, 17391 CF ODLS of order 9 found

Wednesday, March 11, 2020 SerVal#87

About the ended challenge in Gerasim:

First place: The Scottish Boinc Team.

Second place: Russia Team.

Third place at Crystal Dream.

*****

Dirk Broer, Member of team AMD Users wrote:

"AMD Users would like to join, but our team captain isn't the Gerasim team founder -and no longer active in our team too..."

Well well.. dear Dirk. Now you are the founder of the team. Also, you have the opportunity to transfer control of the team to any team member.

Team AMD Usershttp://gerasim.boinc.ru/users/viewTeamMembers.aspx?teamid=37

I hope in the next challenge we will see "AMD users".

*****

"Dragon never sleeps"(c).

Tuesday, February 18, 2020 SerVal#86

O! Gibson Praise AMD EPYC 7281 16-Core Processor. First position !

Impressive performance. (alas, the price is too  ).
>Впечатляющая производительность( и цена - тоже).

Wednesday, January 8, 2020 SerVal#85

Счастливого Рождества и развлечений, дорогие участники.
Кстати, вот результат моих Рождественских развлечений.

Merry Christmas and entertainment, dear participants.
By the way, the result of my Christmas entertainment.

*****************

D:\>BigIntCuda.exe -getMersenPrimesInRange Mp10 Mp20

Intel(R) Core(TM)2 Quad CPU Q9650  @ 3.00GHz
Accelerator   : GeForce GTX 460

Searching in range  : 89 ... 4423 ( 578 exponents )  

Exponents processed : 578  

time : 193.987 sec.

 Mersen primes:

 Mp10    exponent : 89
 Mp11    exponent : 107
 Mp12    exponent : 127
 Mp13    exponent : 521
 Mp14    exponent : 607
 Mp15    exponent : 1279
 Mp16    exponent : 2203
 Mp17    exponent : 2281
 Mp18    exponent : 3217
 Mp19    exponent : 4253

*****************

Looks like it's time to buy a 12 core AMD Risen 9. 
Friday, January 3, 2020 SerVal#84

Meanwhile, a new king of computing has appeared. AMD Ryzen 9 3900X 12-Core Processor.

User BOINC.RU Average credit: 42,388.27

Thursday, September 12, 2019 SerVal#83

Неплохо работают 4 AMD ThreadRippers. Cкорость проекта увеличилась в два раза.

The 32-core 4 AMD ThreadRippers work well. The FP speed of the  project has doubled.

 
Sunday, February 24, 2019 evatutin#82

Наш коллектив завершил классификацию и описание комбинаторных структур из ДЛК порядка 1-8: http://evatutin.narod.ru/evatutin_ls_all_structs_n1to8_rus.pdf

Our collective finished description of combinatorial structures from DLSs of orders 1-8: http://evatutin.narod.ru/evatutin_ls_all_structs_n1to8_eng.pdf

Wednesday, November 7, 2018 evatutin#81

По результатам конференции GRID'18 в г. Дубна опубликованы тезисы доклада

Vatutin E.I., Titov V.S., Zaikin O.S., Kochemazov S.E., Manzyuk M.O., Nikitina N.N. Orthogonality-based classification of diagonal Latin squares of order 10 // Distributed computing and grid-technologies in science and education (GRID’18): book of abstracts of the 8th international conference. Dubna: JINR, 2018. pp. 94–95.

В них приведено краткое описание найденных в проекте комбинаторных структур из ОДЛК порядка 10. В данном перечне приведено их подробное описание: http://evatutin.narod.ru/evatutin_ls_all_structs_rus.pdf

Поиск новых структур активно продолжается в проекте.

 

After GRID'18 scientific conference in Dubna was published abstract

Vatutin E.I., Titov V.S., Zaikin O.S., Kochemazov S.E., Manzyuk M.O., Nikitina N.N. Orthogonality-based classification of diagonal Latin squares of order 10 // Distributed computing and grid-technologies in science and education (GRID’18): book of abstracts of the 8th international conference. Dubna: JINR, 2018. pp. 94–95.

This publication contains brief description of the combinatorial structures from ODLSs of order 10. This list contains their detailed description: http://evatutin.narod.ru/evatutin_ls_all_structs_eng.pdf

The search for new structures is actively continuing in the project.

Monday, February 26, 2018 evatutin#80

We have two new articles that are recently published in Open Engineering journal.

Vatutin E.I. Comparison of Decisions Quality of Heuristic Methods with Limited Depth-First Search Techniques in the Graph Shortest Path Problem // Open Engineering. Vol. 7. Iss. 1. 2017. pp. 428–434. DOI: 10.1515/eng-2017-0041. https://www.degruyter.com/view/j/eng.2017.7.issue-1/eng-2017-0041/eng-2017-0041.xml?format=INT

Vatutin E.I., Zaikin O.S., Kochemazov S.E., Valyaev S.Y. Using Volunteer Computing to Study Some Features of Diagonal Latin Squares // Open Engineering. Vol. 7. Iss. 1. 2017. pp. 453–460. DOI: 10.1515/eng-2017-0052. https://www.degruyter.com/view/j/eng.2017.7.issue-1/eng-2017-0052/eng-2017-0052.xml?format=INT

They are includes some results of computing experiments aimed to investigate quality of heuristic decisions in the graph shortest path problem (first) and to find diagonal Latin squares with extremal number of transversals (second).

Saturday, January 6, 2018 evatutin#79

В проекте запущен тестовый подпроект, целью которого является тестирование возможностей поиска ОДЛК на NVidia GPU. Подробности обсуждаются тут: http://forum.boinc.ru/default.aspx?g=posts&m=89963#post89963, http://forum.boinc.ru/default.aspx?g=posts&m=89961#post89961.

 

The project launches a test subproject aimed to testing of ODLS searching ability using NVidia GPUs. Detailed description here: http://forum.boinc.ru/default.aspx?g=posts&m=89963#post89963, http://forum.boinc.ru/default.aspx?g=posts&m=89961#post89961.

Monday, December 4, 2017 evatutin#78

Brief science in graphical form

Sunday, April 16, 2017 evatutin#77

В проект добавлен новый эксперимент e40, целью которого является поиск ОДЛК для симметричных ДЛК. Данный эксперимент будет идти параллельно с предыдущим экспериментом, в котором производится поиск ОДЛК для ДЛК общего вида. Подробнее об этом можно почитать здесь: http://forum.boinc.ru/default.aspx?g=posts&m=87415#post87415

 

A new e40 experiment has been added to the project, it aims to search for ODLS for symmetric DLSs. This experiment will go in parallel with the previous experiment, in which the search for ODLS for a general type DLS performed. More details about this can be found here: http://forum.boinc.ru/default.aspx?g=posts&m=87415#post87415

Tuesday, March 14, 2017 evatutin#76

В проекте начат новый эксперимент, целью которого является наполнение базы канонических форм (КФ) ортогональных диагональных латинских квадратов (ОДЛК). Подробнее об этом можно почитать здесь: http://forum.boinc.ru/default.aspx?g=posts&m=86752#post86752

The project launched a new experiment aimed to fill the base of canonical forms (CF) of orthogonal diagonal Latin squares (ODLS). More details about this can be found here: http://forum.boinc.ru/default.aspx?g=posts&m=86752#post86752

Friday, March 3, 2017 SerVal#75

Выдача заданий приостановлена. После анализа кода выяснилось, что многие дружественные пары программа может пропустить(не найти). Выдача заданий будет возобновлена после изменения кода и дополнительной проверки программы. Предположительно через 1-2 недели. Прошу участников принять мои извинения.

*****

Send tasks suspended. After code analysis revealed that the program can skip many friendly pairs. Send of tasks will be resumed after the code changes and additional verification of program. Presumably 1-2 weeks. I ask members to accept my apology.

Thursday, February 2, 2017 evatutin#74

Another our article was published:

Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzyuk M.O., Kochemazov S.E., Titov V.S. Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares // CEUR Workshop proceedings. Selected Papers of the 7th International Conference Distributed Computing and Grid-technologies in Science and Education. 2017. Vol. 1787.pp. 486–490. urn:nbn:de:0074-1787-5.

Sunday, January 22, 2017 evatutin#73

 Запущен новый короткий эксперимент, целью которого является анализ комбинаторных характеристик диагональных латинских квадратов порядка 8.

The new short experiment was started. It is aimed to investigate some values of combinatorial characteristics for diagonal Latin squares of order 8.

Tuesday, November 22, 2016 evatutin#72

Перед конференцией в Переславле мы подготовили подробную презентацию, которая охватывает весь объем работы, который был проделан нашей командой в задаче перечисления ДЛК до N<10.

Before National Supercomputing Forum in Pereslavl-Zalessky wa are prepare detailed presentation that describes all our work aimed to enumerating of diagonal Latin squares of order N<10.

Tuesday, October 11, 2016 evatutin#71

В проекте начат эксперимент, целью которого является анализ применения метода роя частиц в задаче поиска кратчайших путей в графе. Время счета WU'шек до нескольких часов, с ростом размерности задачи возможны относительно высокие требования к необходимой памяти

Now within the project is started new experiment aimed to use particle swarm optimization method at the shortest path problem in graphs with constraints. Computing time is up to some hours, during grouth of size of the problem may be relatively high demands on the necessary memory

Friday, October 7, 2016 evatutin#70

Предыдущий эксперимент, посвященный подсчету числа диагональных латинских квадратов (ДЛК) порядка 9 успешно завершен, получены искомые оценки для числа нормализованных ДЛК и общего числа ДЛК порядка 9, в настоящее время мы планируем провести их дополнительную проверку, после чего будем публиковать.

В проекте начат небольшой эксперимент, целью которого является анализ применения метода случайных блужданий в задаче поиска кратчайших путей в графе. WU'шки очень короткие, дедлайн 1 день, за неделю думаю все посчитаем, присоединяйтесь!

 

Last experiment aimed to enumerating diagonal Latin squares (DLS) of order 9 was successfully finished. Now we have values of number of normalized DLS and total number of DLS of order 9. Currently we perform additional verifying, after that results and algorithms will be published.

Now within the project is organized new small experiment aimed to use random walks method at the shortest path problem in graphs with constraints. This experiment has very small WU's and 1 day deadline. After one week I hope it will be finished.

Sunday, June 19, 2016 evatutin#69

В проект добавлены 1,2 млн. WU'шек и новый расчетный модуль (версии 1.9.1 и 1.9.2 для x86 и x64). Целью нового эксперимента является анализ асимптотического поведения в задаче формирования диагональных латинских квадратов заданного порядка. Подробнее об этом можно почитать здесь: http://forum.boinc.ru/default.aspx?g=posts&m=83255#post83255. По данной тематике на конференцию "Distributed Computing and Grid-technologies in Science and Education" https://indico-new.jinr.ru/conferenceDisplay.py?confId=85 принята публикация Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzuk M.O., Kochemazov S.E., Titov V.S. Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares, данные расчеты являются ее развитием.

1.2 million new WU's and new computing unit (versions 1.9.1 and 1.9.2 for x86 and x64 platforms) were added to the project. The aim of the new experiment is the analysis of the asymptotic behavior in the problem of getting diagonal Latin squares of selected order. More information can be found here: http://forum.boinc.ru/default.aspx?g=posts&m=83255#post83255 (in Russian). On this topic the article Vatutin E.I., Zaikin O.S., Zhuravlev A.D., Manzuk M.O., Kochemazov S.E., Titov V.S. Using grid systems for enumerating combinatorial objects on example of diagonal Latin squares was accepted to the conference "Distributed Computing and Grid-technologies in Science and Education" https://indico-new.jinr.ru/conferenceDisplay.py?confId=85. These calculations are its development.

Saturday, November 7, 2015 evatutin#68

 

По результатам конференции BOINC:FAST 2015 опубликована работа

Vatutin E.I., Valyaev S.Yu., Titov V.S. Comparison of Sequential Methods for Getting Separations of Parallel Logic Control Algorithms Using Volunteer Computing // CEUR Workshop Proceedings. Proceedings of the Second International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2015). Vol. 1502. Technical University of Aachen, Germany, 2015. P. 37–51. urn:nbn:de:0074-1502-3.

В ней сделан краткий обзор того, что сделано в проекте по задаче поиска разбиений (на английском, как недавно просили забугорные кранчеры). Основной упор в работе сделан на последовательные методы, в ближайшей перспективе нужно попробовать различные итерационные методы.

 

After BOINC:FAST 2015 conference was published article


Vatutin E.I., Valyaev S.Yu., Titov V.S. Comparison of Sequential Methods for Getting Separations of Parallel Logic Control Algorithms Using Volunteer Computing // CEUR Workshop Proceedings. Proceedings of the Second International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2015). Vol. 1502. Technical University of Aachen, Germany, 2015. P. 37–51. urn:nbn:de:0074-1502-3.

This work aimed to show the brief review of experimental results within getting separations problem (in english as requested by some crunchers). Main result is directed to comparison of different known consecutive methods. At the nearest future we plan to organize additional set of experiments with iterative methods.

Monday, July 6, 2015 evatutin#67

В проект добавлено более 1 млн. WU'шек, можно начинать считать. Цель текущего (№ 24) и следующего (№ 25, он уже готов и на очереди) экспериментов заключается в попытке расширить область сравнения методов в задаче поиска разбиений как минимум до N=800.

Over 1 million WUs was added, we are working again. Aim of current (№ 24) and next (№ 25, it is also ready but not added yet) is to expand analazed area for heuristic methods of getting separations at least to the N=800.

Tuesday, June 2, 2015 SerVal#66

Обновление страниц статистики почти завершено. Для их проверки добавлено 40000 заданий для приложения "primeSearch" - 4 набора по 10 000 заданий с кворумом равным  2, 3, 4 и 5. Время выполнения заданий ~ 3-5 минут. На компьютере должен  быть установлен Visual C++ Redistributable Packages for Visual Studio 2013.

Updating the statistics pages is almost complete. For their test added 40,000 jobs to the application "primeSearch" - 4 sets of 10 000 jobs, having the quorum of 2, 3, 4 and 5. Time of a job, about 3-5 minutes. Visual C ++ Redistributable Packages for Visual Studio 2013 must be installed on your computer.

Friday, May 15, 2015 SerVal#65

Для создания и проверки страницы Top Accelerators в проект добавлено 100000 заданий для ГПУ (приложение "Prime Search"). Время выполнения заданий ~ 3-5 минут. На компьютере должен  быть установлен Visual C++ Redistributable Packages for Visual Studio 2013

To create and test page Top Accelerators in the project added 100000 jobs for the GPU (application "Prime Search"). Time of a job, about 3-5 minutes. Visual C ++ Redistributable Packages for Visual Studio 2013 must be installed on your computer.

 

Sunday, April 19, 2015 evatutin#64

В проекте стартовал новый эксперимент, целью которого является уточнение поведения эвристических методов в области графов малой плотности. Подробности здесь: http://forum.boinc.ru/default.aspx?g=posts&m=73640#post73640

We are starting new experiment aimed to clarification of behavoir of heuristic methos at the area with small density of graphs. More detailed description is here: http://forum.boinc.ru/default.aspx?g=posts&m=73640#post73640

Monday, February 16, 2015 evatutin#63

В проекте запущен новый научный эксперимент, целью которого является апробация возвратной стратегии для ряда эвристических методов (жадный (gr), случайный (rmr), взвешенный случайный (wrmr)), а также методов имитации отжига (sa) и перебора с ограничением глубины (ldfs) в задаче поиска кратчайших путей в графе. Подробности здесь: http://forum.boinc.ru/default.aspx?g=posts&m=72355#post72355

We are starting new scientific experiment aimed to trying to use returning strategy with well known heuristic methods (greedy (g), random search (rmr), weighted random search (wrmr)) and new implementations for simulated annealing method (sa) and limited depth first search (ldfs) at the problem of getting shortest pathes in given graph. More detailed description (in Russian) is here: http://forum.boinc.ru/default.aspx?g=posts&m=72355#post72355

Sunday, January 11, 2015 evatutin#62

В проект добавлена обновленная версия расчетного приложения spstarter с поддержкой передачи логов на сервер. С ее помощью планируется короткий тестовый запуск, после чего будет запущен очередной большой эксперимент.

 The new version of spstarter with logging transfer to server was added to the project. With its participating we are planning short test run. After that we plan to start the next scientific experiment.

Wednesday, January 7, 2015 SerVal#61

Добавлена версия тестового приложения для nVidia ГПУ.
Для запуска ГПУ приложений необходимо скачать и установить Visual C++ Redistributable Packages for Visual Studio 2013.

Added version of the test application for nVidia GPU.
To run the GPU applications, you must download and install Visual C++ Redistributable Packages for Visual Studio 2013.

Tuesday, January 6, 2015 SerVal#60

Обновление сервера завершено.

Добавлено тестовое приложение "prime search" для ЦПУ, АТИ ГПУ и Интел ГПУ. Приложение для nVidia ГПУ не добавлено, в связи с тем, что вычисляемый нвидиа ГПУ sqrt(x) не совпадает с вычисленным на ЦПУ, АТИ ГПУ и Интел ГПУ. Для тестового приложения добавлены 100 тысяч заданий: 50 тыс с кворумом равным 2 (ps2_..) и 50 тыс с кворумом равным 3 (ps3_..)

По умолчанию обработка на всех ГПУ запрещена. Выбор приложений и видеоадаптеров находится на этой странице: Project prefs.

Приложение 'Separator' и задания для него будут добавлены в течение несколькуих дней.
Для участия в проекте необходима версия Боинк Менеджера 7.2.xx и выше.

*****

Server update is complete.

Added test application "prime search" for the CPU, GPU ATI and Intel GPU. Application for nVidia GPU is not added, due to the fact that Nvidia GPU calculated sqrt (x) does not match with the calculated on the CPU, ATI GPU and Intel GPU. To test application added 100,000 jobs: 50 thousand with a quorum of 2 (ps2_ ..) and 50 thousand with a quorum of 3 (ps3_ ..)

By default, the job processing on the GPU is disabled.
Selection of applications and video cards located on this page: Project prefs.

Application 'Separator' and tasks for the application will be added in a few days.
The minimum version Boinc Manager at least 7.2.xx.